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Abstract—This paper investigates the application of immunity 

genetic algorithm (IGA) for the problem of optimal placement of 

phasor measurement units (PMUs) in an electric power network. 

The problem is to determine the placement sites of the minimal set 

of PMUs which makes the system observable. Incorporating 

immune operator in the canonical genetic algorithm (GA), on the 

condition of preserving GA's advantages, utilizes some 

characteristics and knowledge of the problems for restraining the 

degenerative phenomena during evolution, so as to improve the 

algorithm efficiency. This type of prior knowledge about some 

parts of optimal solution exists in the PMU placement problem. 

So, the IGA is adopted in this paper to solve the problem. Also, a 

new effect which is preventing from familial reproduction is 

studied which shows an increase in converging speed. The 

effectiveness of the proposed method is verified via IEEE 

standard systems and a realistic large-scale power system.  

 
Index Terms—Genetic algorithm (GA), immunity genetic 

algorithm (IGA), observability analysis, optimal placement of 

PMUs (OPP), phasor measurement unit (PMU).  

I. INTRODUCTION 

S have evolved into a practical tool for 

measurement of positive sequence associated 

with power system voltage and current phasors. These devices 

are synchronized via signals from global positioning system 

(GPS) satellite transmission [1]. They can enhance many 

present applications such as state estimation and bad data 

detection [2], stability control [3], remedial action schemes 

[4], and disturbance monitoring [5]. As the voltage and current 

phasors are measured, the equations of state estimation 

problem become linear and the solution can be obtained 

straightforwardly [6].     

 It is neither economical nor necessary to install a PMU at 

each bus of a wide-area power network. As a result, the 

problem of OPP concerns with where and how many PMUs 

should be implemented to a power system to achieve full 

observability at minimum number of PMUs. The theory of 

network observability can be divided into two groups of 

techniques: numerical and topological [7]. The former is based 
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on whether the measurement gain or Jacobian matrix is of full 

rank or not. This technique suffers from huge matrix 

manipulation which means being computationally expensive. 

The latter, as the commonly used technique, is however based 

on whether the spanning tree of full rank can be constructed or 

not.  

Strategies for the OPP problem have been concentrated as a 

research interest. In this area, considerable interesting works 

have been reported and each of them has its own pros and 

cons. In [8], the problem was solved using dual search 

algorithm along with simulated annealing (SA) method, which 

is apt to be suffered from excessive calculation burden if 

applied to a large power system. SA is a powerful stochastic 

optimization technique that can, theoretically, converge 

asymptotically to a global optimum solution. However, it is 

very time consuming to reach a near-global minimum. 

Reference [9] proposed three approaches aiming at reducing 

computational burden of the OPP problem. First, SA method 

was modified in setting the initial temperature and cooling 

procedure. Second, direct combination (DC) method was 

suggested using a heuristic rule to select the most effective sets 

in the observability sense. Last, Tabu search (TS) method was 

employed to reduce the searching space effectively. The 

literatures appeared after this paper revealed that its results 

were not the optimal values even in small studied cases. 

In [10], the OPP problem was dealt with non-dominated 

sorting genetic algorithm (NSGA). The proposed method 

estimates each optimal solution of objective functions by the 

graph theory and simple GA. The best tradeoff between 

competing objectives is then searched by using NSGA. As the 

proposed method requires more complex computations, it is 

restricted by the size of problem. 

A GA-based procedure for solving the OPP problem was 

presented in [11]. There is no implication on the aspects of 

converging speed and execution time. Also, the examined test 

systems are relatively small comparing to those needed in 

practice.  

An integer programming based approach for the 

optimization of PMUs' installation costs has been applied in 

[12]. In this paper, it has been implicated that some terms 

should be neglected to make the model tractable. Although the 

authors have mentioned that this approximation has no effect 

on the optimization of simulated cases, but it results in lack of 

generality for the proposed model. 
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In [13], the search tree and SA techniques were used for the 

OPP problem. Novel concepts of incomplete observability and 

depth of unobservablity were introduced in this literature and 

different types of the problem were worked out. 

Reference [7] introduced a novel topological method based 

on the augment incidence matrix and TS. Although, TS has 

been described as a global optimization algorithm, but 

comparing its results with those of previous papers does not 

justify the claimed statement. 

Referring to the above mentioned features associated with 

different techniques, it is evident that most of the introduced 

methods suffer from a very time consuming process to reach a 

near-global optimum. In [14], IGA was developed and its 

effectiveness was verified on the traveling salesman problem 

(TSP) as a benchmark. It was revealed that IGA is not only 

feasible but also effective and is conducive to alleviate the 

degeneration phenomenon in the original GA, thus greatly 

increases the converging speed. The main idea behind IGA is 

employing the prior knowledge of problem in the search 

process. This notion is applicable in the OPP problem since 

some buses which are/are not required having PMU can be 

determined initially.  

Based on the above consideration, this paper attacks the 

OPP problem by means of IGA. Three effective vaccines are 

abstracted using the rules associated with topological 

observability analysis. This paper also studies the effect of 

preventing from familial reproduction, which was inspired 

from nature, on the considered problem. Furthermore, a novel 

rule in the observability assessment of electric network is 

employed. By considering this rule, the minimum number of 

required PMUs is decreased in some cases. The proposed 

model is justified using the IEEE standard test systems also a 

realistic large power system.   

This paper is organized as follows. Section II discusses the 

optimization issues associated with IGA. In Section III, the 

OPP problem is described and novel statements of 

observability rules are presented. Section IV shows the 

implementation of IGA on the OPP problem and discusses the 

simulation results. Finally, conclusions attained by this paper 

are summarized in Section V.  

II. OPTIMIZATION ALGORITHM 

Some outstanding algorithms have surfaced in recent 

decades. Some of these methods include the GA (Holland, 

1975), SA (Kirkpatrick et al., 1983), particle swarm 

optimization (Parsopoulos and Vrahatis, 2002), ant colony 

optimization (Dorigo and Maria, 1997), and evolutionary 

algorithms (Schwefel, 1995) [15]. They represent processes in 

nature that are remarkably successful at optimizing natural 

phenomena. They rely on an intelligent search of a large but 

finite solution space using statistical methods. The algorithms 

do not require taking cost function derivatives and can thus 

deal with discrete variables and non-continuous cost functions. 

This feature is the most important one associated with 

employing these algorithms in optimal placement problems 

such as OPP problem.  

As mentioned earlier, the IGA is adopted as the 

optimization tool to deal with the OPP problem. So in this 

section, two models, i.e. GA and immune algorithm (IA), are 

initially introduced and then IGA is briefly presented. 

A. Genetic Algorithm (GA) 

GA was inspired by the natural evolution of species. In 

natural evolution, each species searches for beneficial 

adaptations in an ever-changing environment. As species 

evolve, new genetic information is encoded in the 

chromosomes. This information changes by the exchange of 

chromosomal material during breeding (crossover) and also 

mutation [16]. From the engineering standpoint, if we have 

two solutions with good approximation for a given problem, 

their combination might lead to a better solution. So, GA 

pertains to the search algorithms with an iteration of 

generation-and-test [14]. With the characteristics of easier 

application, greater robustness, and better parallel processing 

than most classical methods of optimization, GA has been 

widely used for combinatorial optimization [17], structural 

designing [18], machine learning rule-based classifier systems 

[19], and etc. The disadvantages associated with GA will be 

expressed in Subsection C of this section. 

B. Immune Algorithm (AI)  

IA mimics a basic immune system defending against 

bacteria, viruses and other disease-related organisms. It is 

equipped with dramatic and complex mechanisms that 

recombine genes to defeat invading antigens by reducing the 

number of antibodies and keeping out the antigens [20]. Using 

this mechanism, the IA provides a good performance as an 

optimization algorithm. The idea of immunity is mainly 

realized through two steps based on reasonably selecting 

vaccines, i.e. a vaccination and an immune selection [14]. 

These are used in IGA to enhance the performance of 

canonical GA. 

C. Immunity Genetic Algorithm (IGA)   

Crossover and mutation as two operators of GA award each 

individual the chance of optimization and ensure the 

evolutionary tendency with the selection mechanism of 

survival of the fitness. Since the two genetic operators make 

individuals change randomly and indirectly during the whole 

process, they can cause certain degeneracy. In some cases, 

these degenerative phenomena are very obvious which restrict 

the application of GA. On the other hand, there are many basic 

and obvious characteristics or knowledge in the problems that 

the GA operators can not employ them in a fashion of 

appearance of some torpidity when solving the problems. 

Some tricks of IA can be combined with GA, resulting IGA, to 

enhance the optimization performance. 

IGA utilizes the local information to intervene in the 

globally parallel process and restrain or avoid repetitive and 

useless work during the course, so as to overcome the 

blindness in action of the crossover and mutation. During the 
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actual operation, IGA refrains the degenerative phenomena 

arising from the evolutionary process, thus making the fitness 

of population increase steadily. Fig. 1 depicts the flowchart of 

IGA [14]. The dashed rectangle represents the new immune 

operator which is added to the GA. As noted earlier, 

vaccination and immune selection are performed as the 

immunity operator in IGA. Generally speaking, the vaccination 

is used for raising fitness, and the immune selection is for 

preventing the deterioration. They are explained in the 

following of this subsection. 

It has to be noted that as IGA is a novel-introduced 

algorithm with low previous applications, a brief explanation 

on its notions is presented to make the readers familiar with it. 

Detailed explanations and proofs are available in [14]. 
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Fig. 1. IGA flowchart. 

1) Vaccination: It means modifying some genes of some 

individuals to gain higher fitness or greater probability. A 

vaccine is abstracted from prior knowledge or local 

information of the problem. In the problem considered by this 

paper, relatively significant information can be deduced by 

detailed analysis of the problem. As expected, the vaccine's 

information amount and validity play an important role in the 

performance of the algorithm. The amount of injection 

associated with each vaccine, i.e. the number of individuals 

being vaccinated in each population, can be selected randomly 

based on the immune probability or by a fixed value based on 

the previous experiences. It has to be noted that in a certain 

problem such the one considered here, there may not be only 

one vaccine. In such a case, the injection can be carried out by 

either selecting any vaccine randomly or getting them together. 

Appropriate using of vaccination can improve the efficiency 

of the algorithm greatly. In contrast, if the prior estimations of 

the problem are wrong, the vaccination will hold back the 

searching actions. Hence, the abstraction of vaccines and their 

injections are so crucial operation in the IGA technique. 

Self-adapting selecting vaccines is a superior feature of IGA 

that should be implied here. In some of the optimization 

problems, it is difficult or even impossible to abstract prior 

information about these problems. On the other hand, in 

possible cases, it may greatly increase the workload of the 

method and decrease its efficiency. So, in such cases, the 

information needed for vaccines can be abstracted from genes 

of the present optimal individual during the evolutionary 

process. Reference [14] has provided detailed explanations 

about this subject.        

2) Immune Selection: It is the next process after the 

vaccination. This operation consists of two stages. Immune test 

is the first one to be continued to test the individual 

vaccinated. If the fitness rises, then go to the next stage; or else 

make the parents take part in the competition of selection 

instead of the offspring. The second stage is the probabilistic 

selection. Selection is based on the annealing process which 

means that the probability of joining individual xi to the new 

parents is as below: 
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where n0 is the number of present offspring,  f(xi) is the fitness 

of the individual i, and TK is the annealing temperature 

approaching zero with the progress of generations. The 

annealing temperature is calculated by 

1001 0
0 =+= T),
k

T
ln(Tk  (2)  

where k is the generation number. 

D. Familial Reproduction Effect  

The genetic investigations have proven that in the human 

species, the familial reproduction results in some disorders and 

diseases in the offspring [21]. Considering that in most human 

societies, the marriage between two parents' offspring, i.e. a 

son and a daughter from identical parents, is illegal and against 

the religious principles, this observation has been inferred 

from higher level familial marriages, e.g. between cousins. 

However, it is expected that the degenerative effect of familial 

recombination between offspring generated from identical 

parents appears similar to the other familial marriages. We 

called this phenomenon as familial reproduction effect and try 

to investigate it on and by means of the considered problem. 

Fig. 2 illustrates this phenomenon in a simple pictorial manner. 

The left hand side of Fig. 2 shows the recombination of two 

parents while generating two offspring. Since the parents are 

likely with good fitness that they are selected to mating, both 

offspring have chances to be better than parents based on the 
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building block schemata. Assuming that these offspring are 

adopted to mate in the next generation(s), it is probable to 

generate their parents as depicted clearly by the right hand side 

of Fig. 2. However in a generic view, even if the crossover 

point of offspring in generation of Gen+1 is different from that 

of their parents, the resultant offspring have very similarities to 

their grand parents or maybe their aunts or uncles. Occurrence 

of this phenomenon makes repetitive and useless work during 

the solution search course and reduces the converging speed. 
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Fig. 2. Familial crossover effect.  

Based on the above consideration, it is expected that 

avoiding from familial mating up to a given level can enhance 

the converging process of algorithm and its efficiency. 

However, similar to the other ideas in the field of heuristic 

algorithms, this can not be a general observation and should be 

examined in the specific cases. Simulation results on the OPP 

problem verify the expected results associated with this 

phenomenon particularly when the number of individuals in 

each population is few.  

III. DESCRIPTION OF OPP PROBLEM 

The description of OPP problem is briefly presented here. 

Detailed explanations can be found in [7, 8, 12]. The OPP 

problem concerns with where and how many PMUs should be 

implemented in a power system to achieve full observability at 

minimum number of PMUs. So, minimizing the number of 

PMUs is the objective function of this optimization problem 

and the constraint of the problem is being full observable of 

the electric network. According to a commonly used method, 

the problem constraints can be added to the objective function 

weighted by appropriate multipliers. So, the objective function 

of the problem is calculated according to  

UOPMUi NwNw)x(C 21 +=  (3) 

where w1 and w2 are constant weights which are respectively 

selected  equal to 1 and 3 in the OPP problem. These values 

are selected based on the experiences of different case studies. 

However, they can be tuned for any specific case to improve 

the efficiency of the method. In (3), NPMU is the number of 

PMUs and NUO is the number of unobservable buses associated 

with chromosome i. Knowing that (3) should be minimized, 

the fitness of individual i, i.e. f(xi) in (1), can be assumed as the 

inverse of C(xi).  

Determination of NUO should be done using observability 

analysis. Similar to the most literatures [7, 8, 11, 12], 

topological analysis is used by this paper for the observability 

assessment. It is defined as the existence of one spanning 

measurement tree of full rank in the network [8]. The 

observability implies that each bus of the network must have 

one phasor voltage measurement or a phasor voltage pseudo-

measurement. Obviously, having the voltage phasor of all 

buses, any other parameter of the network such as branch 

currents or load currents can be obtained. Determination of the 

voltage phasor measurement, direct or pseudo, needs to use 

some rules. In this paper, we use only the voltage phasors to 

observability analysis unlike other literatures which use both 

voltage and current phasors. It should be noted that this 

simplifies only the statement of the rules; however, they 

exactly express the same thing with the rules of other 

literatures. The rules used by this paper are expressed as 

follows. 

Rule 1: Installation of a PMU in a given bus makes itself 

and other buses incident to that bus observable. This implies 

that the voltage phasors of these buses are known. 

Rule 2: If only one bus is unobservable among a zero-

injection bus and its entire incident buses, it can be observable 

using the Kirchhoff's current law (KCL) at the zero-injection 

bus.  

These two rules include all four conditions mentioned by 

[7]. Rule 2 should be applied recursively until no new 

observable bus is identified. 

Rule 3: If the entire incident buses to n connected 

unobservable zero-injection buses are observable, the zero-

injection buses can be observable applying KCL at them [22]. 

A. Abstraction of Vaccines 

As it was mentioned earlier, vaccines are abstracted from 

prior knowledge or local information of the problem. 

Fortunately in the OPP problem, some types of prior 

knowledge can be extracted as discussed in the following. The 

single line diagram of a 9-bus system is shown in Fig. 3 and it 

is used to simplify the explanation of vaccines' abstraction. 

Buses 7 and 8 in Fig. 3 are zero-injection buses. 

Vaccine 1: The buses with only one incident line should 

have no PMU, e.g. bus 1 in Fig. 3. The reason for this is that 

installation of PMU in bus 1 only makes itself and bus 4 

observable. However, this PMU can be installed in bus 4 to 

make other buses, i.e. buses 5 and 9, observable in addition to 

buses 1 and 4. It is important to point out that as the 

abstraction knowledge of vaccine 1 is always true, this vaccine 

should be injected in the entire individuals with probability  

one.  

Vaccine 2: If the other side bus of the line connected to a 

bus with only one incident line is not a zero-injection bus, it 

should be assigned as a PMU place, e.g. bus 4 in Fig. 3. 

Similar to vaccine 1, as the knowledge behind vaccine 2 is 

always true, this vaccine should be injected in the entire 

individuals with probability one. The benefit expected with the 

injection of vaccines 1 and 2 is due to this point that 

eliminating even one PMU candidate results in reduction of 

search space by a half. 
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Vaccine 3: Zero-injection buses may not need to have 

PMU. It is evident that the benefits raised by rules 2 and 3 to 

reduce the number of PMUs are achievable only when the 

zero-injection buses are not be equipped with PMU. The 

reason for this is that installation of a PMU in a zero-injection 

bus measures all its current phasors; consequently, there will 

be no unknown current phasor to be determined by KCL at 

that bus. In contrast with vaccines 1 and 2, the idea behind 

vaccine 3 is not true all the time and for all cases. For instance, 

for the system shown in Fig. 3, although the minimum required 

PMUs are 2 at buses 4 and 7, but injection of vaccine 3 

increases the number of PMUs to 3 at buses 4, 6, and 9. 

According to the illustrated reason and to have opportunity of 

finding the global optimum, vaccine 3 should not be injected 

into the entire individuals. Assume that Np is the number of 

individuals in the population, Nv3=α×Np will be the number of 

individuals randomly selected to be injected by vaccine 3. We 

called α as the vaccination rate and it is assumed to be 0.5 in 

the simulated cases.  

4 

5 6 

9 8 

3 7 

2 1 

G G 

G 

 
Fig. 3. 9-bus system used for explanation of vaccines.  

IV. SIMULATION RESULTS AND DISCUSSION 

Simulations are carried out on several systems including 

IEEE 14-, 30-, 57-, and 118-bus test systems [23] as well as a 

large-scale real power system with 2746 buses. The network's 

data of the large system were taken from [24]. The technical 

specifications of the computer used for simulations are 

Centrino 1.6 GHz CPU with 512 MB of RAM.  

The characteristics of the IGA are as follows: Single point 

crossover, mutation rate of 0.5 %, 100 chromosomes for each 

population, and Roulette wheel fitness based selection. The 

best result found in all generations is considered as the 

solution of the problem. The stopping criterion of the program 

is adopted as reaching the iteration number to 1000.  

Here, different features associated with the proposed 

method are investigated and presented in separate subsections.  

A. Results of the IEEE Test Systems Excluding Rule 3 

As previously noted, almost all literatures have only used 

rules 1 and 2 for their observability analysis. To compare IGA 

method with the others, the problems should be solved in an 

equal condition or in other words with an identical fitness 

function. So in this subsection, rule 3 is excluded from the 

observability analysis. As the results of different methods on 

four commonly used IEEE test systems have been reported, 

these systems are adopted to investigate the efficiency of the 

IGA technique.  

The results obtained by IGA and other methods are shown 

in Table I. As it can be seen from this table, the IGA method 

can find the best result for all cases. It is interesting that in the 

IEEE 57-bus test system, which is a relatively small system, 

the minimal solution, i.e. 11 PMUs, has not been found by the 

other techniques except by [13]. Table II gives the PMU 

locations for different cases. In this case, the execution times 

associated with the 14-, 30-, 57-, and 118-bus test systems are 

respectively 2, 4, 11, and 72 seconds. Note that, these values 

are obtained by changing the stopping criterion from a fixed 

generation number to the criterion that predefined optimal 

results must be reached.  

B. Results of the IEEE Test Systems Including Rule 3 

Rule 3 can be beneficial and reduces the required number of 

PMUs while maintaining the network completely observable.  

Here, rule 3 is included in the observability analysis and the 

optimal locations of PMUs are shown in Table III for the test 

systems. 

 
TABLE I 

RESULTS OF DIFFERENT TECHNIQUES AND IGA EXCLUDING RULE 3  

                     Test Systems 

 14-bus 30-bus 57-bus 118-bus 

IGA 3 7 11 29 

Dual Search and SA [8] 3 -- -- 29 

SA and DC and TS [9] 3 7 13 -- 

NSGA [10] -- -- -- 29 

GA [11] 3 7 12 29 

Integer programming [12] 3 -- 12 29 

Search tree and SA [13] 3 7 11 -- 

TS [7] 3 -- 13 -- 

 
TABLE II 

OPTIMAL PMU LOCATIONS OBTAINED BY IGA EXCLUDING RULE 3  

Test System PMU Location (Bus #) 

14-bus 2   6   9 

30-bus 1   5   10  12  18  24  30 

57-bus 1   6   13  19  25  29  32  38  51  54  56 

118-bus 

3   8   11  12  17  21  25  28  34  35  40  

45  49  53  56  62  63  72  75  77  80  85    

86  90  94  102     105     110     114 

 
TABLE III 

OPTIMAL PMU LOCATIONS OBTAINED BY IGA INCLUDING RULE 3  

Test System PMU Location (Bus #) 

14-bus 2   6   9 

30-bus 1   5   10  12  18  24  30 

57-bus 1   6   13  19  25  29  32  38  51  54  56 

118-bus 

3   8   11  12  17  21  25  28  34  35  40  

45  49  53  56  62  72  75  77  80  85  86   

90  94  102     105     110     114 
 

 

The required number of PMUs for the IEEE 14-, 30-, 57-, 
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and 118-bus test systems are respectively 3, 7, 11 and 28. By 

comparing these results with those of condition excluding rule 

3, it is revealed that the required number of PMUs is decreased 

by one for the 118-bus test system. However, rule 3 has no 

impact on the observability assessment of other cases. It is 

evident that this impact strictly depends on the configuration 

of the network, number of zero-injection buses and their 

connections. For 118-bus test system, comparing the PMU 

locations in Table II with those of Table III indicates that the 

PMU of bus 63 is omitted by including rule 3. This result is 

theoretically justified since buses 63 and 64 are two zero-

injection buses connected each other and it is evident that rule 

3 can be beneficial. 

C. Impact of Immune Operator 

For illustrating the impact of immune operator on the 

canonical GA, the OPP problem on the IEEE 57-bus test 

system is solved twice with GA and IGA. As deduced in the 

previous subsections, employing rule 3 has no reducing effect 

in this test system so it is excluded in these simulations. All 

specifications of GA are the same with those in IGA. The 

prevention from familial reproduction is included in both 

algorithms. Since the best result of this problem is known, the 

stopping criterion used in this case is reaching to the number 

of 11 PMUs without unobservable buses, i.e. Ci(x) of 11 or 

fi(x) of 0.0909.  

Fig. 4 depicts the variation of fitness with respect to the 

generations for both canonical GA and IGA. It can be seen that 

both methods find the best solution. However, the IGA finds it 

after 31generation while GA finds it after 68 generations 

which shows an increase of more than 50% in the algorithm 

convergence. The other impact of immune operator that can be 

seen in Fig. 4 is initializing the method with higher fitness.  

Note that due to stochastic nature of the heuristic optimization 

techniques, the final result of different executions can be 

varied. So, the curves of Fig. 4 are the best results after 30 

executions.  
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Fig. 4. Comparison between GA and IGA. 

 

It is essential to point out that the immune operator 

(consisting vaccination and immune selection) has some 

overhead computation in each generation, so the execution 

time of a generation in IGA is a little longer than that in GA. 

However, as the required generations to achieve an acceptable 

solution are decreased, the efficiency of IGA is still superior to 

that of GA. 

D. Impact of Prevention from Familial Reproduction 

As mentioned earlier, it is expected that preventing from 

familial recombination may enhance the converging process of 

GA or IGA. Here, the performance of IGA with and without 

this effect is investigated using the OPP problem on the IEEE 

57-bus test system. The simulation results reveal no 

improvement in the algorithm convergence since the number 

of individuals is relatively large, i.e. 100, and the probability 

of familial recombination is very small. However, after 

reducing the number of individuals from 100 to 12, the 

expected effect is appeared. In this case, the obtained results 

are shown in Fig. 5. It can be seen form this figure that 

preventing from familial reproduction decreases the required 

number of generations from 64 to 57, which shows a growth of 

nearly 10 %. Thus, it can be concluded that the prevention 

from familial reproduction can be useful when the number of 

individuals is few. For individual numbers ranging from 8 to 

30, the convergence growth decreases from 37% to 6%. It 

should also be noted that in this paper this prohibition is only 

imposed on the first degree of offspring. It is expected that 

generalization of this prohibition up to the higher degrees 

enhances the algorithm's efficiency more.  
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Fig. 5. Impact of prevention from familial reproduction. 

E. Simulation of Large–Scale Real Power System 

A very large-scale power system is examined to study the 

performance of the proposed technique. This system has 2746 

buses including 3514 lines and 705 zero-injection buses. 

According to the large dimension of the problem, it is 

expected that an acceptable near optimal solution may be 

found after a large number of generations. The stopping 

criterion of the algorithm is adopted as the number of 

generations equal to 5,000. The average time for the execution 

of each generation is about 30 seconds. So, the total 

computation time of this case is about 44 hours. After ten 
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executions, the best obtained result is 609 PMUs. It is worth 

noting that although it seems that the long computation time is 

a very important restriction of the heuristic optimization 

methods, but better parallel processing than most classical 

methods improves applicability of these techniques. Also, the 

computation time burden can be alleviated by careful 

portioning a large-scale problem into a set of medium-scale 

problems. This idea is called decomposition technique and has 

a practical background since in practice, the large power 

system is split into small sub-networks and each sub-network 

is managed by its local control center [25]. 

V. CONCLUSION 

In this paper, the application of the IGA method to the OPP 

problem was presented. Utilization of the local and prior 

knowledge associated with the considered problem is the main 

idea behind IGA. The prior knowledge of the OPP problem 

was inferred based on the topological observability analysis 

and it was abstracted as some vaccines. The injection of these 

vaccines into the individuals of generations revealed a 

remarkable increase in the convergence process. The vaccine's 

information amount and validity play an important role in the 

performance of the algorithm. Also, the prevention from 

familial reproduction was modeled in the technique. This 

effect was revealed some enhancement in the converging 

speed of the algorithm particularly when the number of 

individuals in each population is few. The comparison of the 

obtained results on IEEE standard cases with those of other 

methods exhibited that the proposed method can successfully 

compete with the others.   
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